continuous transformations - определение. Что такое continuous transformations
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое continuous transformations - определение

Martensitic transformation; Displacive phase transformations; Displasive phase transformations; Displacive transformations; Displacive transformation; Diffusionless transformations; Military transformation
Найдено результатов: 529
Continuous function         
  • The graph of a [[cubic function]] has no jumps or holes. The function is continuous.
  • 1=exp(0) = 1}}
  • section 2.1.3]]).
  • 1=''ε'' = 0.5}}.
  • Riemann sphere]] is often used as a model to study functions like the example.
  • The graph of a continuous [[rational function]]. The function is not defined for <math>x = -2.</math> The vertical and horizontal lines are [[asymptote]]s.
  • For a Lipschitz continuous function, there is a double cone (shown in white) whose vertex can be translated along the graph, so that the graph always remains entirely outside the cone.
  • oscillation]].
  • The sinc and the cos functions
  • Point plot of Thomae's function on the interval (0,1). The topmost point in the middle shows f(1/2) = 1/2.
  • thumb
FUNCTION SUCH THAT THE PREIMAGE OF AN OPEN SET IS OPEN
Continuity property; Continuous map; Continuous function (topology); Continuous (topology); Continuous mapping; Continuous functions; Continuous maps; Discontinuity set; Noncontinuous function; Discontinuous function; Continuity (topology); Continuous map (topology); Sequential continuity; Stepping Stone Theorem; Continuous binary relation; Continuous relation; Topological continuity; Right-continuous; Right continuous; Left continuous; Left-continuous; C^1; Continuous fctn; Cts fctn; E-d definition; Continuous variation; Continuity space; Continuous space; Real-valued continuous functions; Left-continuous function; Right-continuous function; Left- or right-continuous function; Continuity at a point; Continuous at a point; Continuous extension
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as discontinuities.
continuous function         
  • The graph of a [[cubic function]] has no jumps or holes. The function is continuous.
  • 1=exp(0) = 1}}
  • section 2.1.3]]).
  • 1=''ε'' = 0.5}}.
  • Riemann sphere]] is often used as a model to study functions like the example.
  • The graph of a continuous [[rational function]]. The function is not defined for <math>x = -2.</math> The vertical and horizontal lines are [[asymptote]]s.
  • For a Lipschitz continuous function, there is a double cone (shown in white) whose vertex can be translated along the graph, so that the graph always remains entirely outside the cone.
  • oscillation]].
  • The sinc and the cos functions
  • Point plot of Thomae's function on the interval (0,1). The topmost point in the middle shows f(1/2) = 1/2.
  • thumb
FUNCTION SUCH THAT THE PREIMAGE OF AN OPEN SET IS OPEN
Continuity property; Continuous map; Continuous function (topology); Continuous (topology); Continuous mapping; Continuous functions; Continuous maps; Discontinuity set; Noncontinuous function; Discontinuous function; Continuity (topology); Continuous map (topology); Sequential continuity; Stepping Stone Theorem; Continuous binary relation; Continuous relation; Topological continuity; Right-continuous; Right continuous; Left continuous; Left-continuous; C^1; Continuous fctn; Cts fctn; E-d definition; Continuous variation; Continuity space; Continuous space; Real-valued continuous functions; Left-continuous function; Right-continuous function; Left- or right-continuous function; Continuity at a point; Continuous at a point; Continuous extension
A function f : D -> E, where D and E are cpos, is continuous if it is monotonic and f (lub Z) = lub f z | z in Z for all directed sets Z in D. In other words, the image of the lub is the lub of any directed image. All additive functions (functions which preserve all lubs) are continuous. A continuous function has a {least fixed point} if its domain has a least element, bottom (i.e. it is a cpo or a "pointed cpo" depending on your definition of a cpo). The least fixed point is fix f = lub f^n bottom | n = 0..infinity (1994-11-30)
Continuous-variable quantum information         
CONTINUOUS (NON-QUANTIZED) QUANTITIES IN QUANTUM INFORMATION SCIENCE
Continuous quantum computation
Continuous-variable (CV) quantum information is the area of quantum information science that makes use of physical observables, like the strength of an electromagnetic field, whose numerical values belong to continuous intervals. One primary application is quantum computing.
Continuous production         
  • Continuous production line for making spaghetti
PRODUCTION METHOD WITHOUT INTERRUPTION
Continuous process; Continuous industrial process
Continuous production is a flow production method used to manufacture, produce, or process materials without interruption. Continuous production is called a continuous process or a continuous flow process because the materials, either dry bulk or fluids that are being processed are continuously in motion, undergoing chemical reactions or subject to mechanical or heat treatment.
History of Lorentz transformations         
  • Original spacetime diagram by Minkowski in 1908.
ASPECT OF HISTORY
History of lorentz transformations; Heaviside ellipsoid
The history of Lorentz transformations comprises the development of linear transformations forming the Lorentz group or Poincaré group preserving the Lorentz interval -x_{0}^{2}+\cdots+x_{n}^{2} and the Minkowski inner product -x_{0}y_{0}+\cdots+x_{n}y_{n}.
Continuous or discrete variable         
WIKIPEDIA ARTICLE COVERING MULTIPLE TOPICS
Discrete number; Discrete variable; Continuous variable; Continuous variables; Discrete variables; Continuous data; Discrete and continuous variables; Quantitative variable; Continuous and discrete variables; Continuous and discrete variable; Discrete value
In mathematics and statistics, a quantitative variable may be continuous or discrete if they are typically obtained by measuring or counting, respectively. If it can take on two particular real values such that it can also take on all real values between them (even values that are arbitrarily close together), the variable is continuous in that interval.
Continuous-time stochastic process         
STOCHASTIC PROCESS FOR WHICH THE INDEX VARIABLE TAKES A CONTINUOUS SET OF VALUES, AS CONTRASTED WITH A DISCRETE-TIME PROCESS FOR WHICH THE INDEX VARIABLE TAKES ONLY DISTINCT VALUES
Continuous-time process
In probability theory and statistics, a continuous-time stochastic process, or a continuous-space-time stochastic process is a stochastic process for which the index variable takes a continuous set of values, as contrasted with a discrete-time process for which the index variable takes only distinct values. An alternative terminology uses continuous parameter as being more inclusive.
Continuous revolution theory         
ELEMENT OF MAO ZEDONG THOUGHT
Continuous Revolution
The Continuous Revolution Theory (sometimes also translated as the theory of continuing revolution under the dictatorship of the proletariat) is an important element of the thought of Mao Zedong. This is often subsumed under the subject of the Cultural Revolution, but it is worth considering the Continuous Revolution Theory in its own right as an independent topic.
Transformation (function)         
  • linear]].
FUNCTION MAPPING A SET TO ITSELF
Mathematical transformation; Mathematical transformations; Transformation (mathematics); Transform (mathematics)
In mathematics, a transformation is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e.
History of continuous noninvasive arterial pressure         
  • Marey's sphygmograph – note the registration unit at the top right, where one can see the blood pressure waveforms obtained from the set of levers at the wrist
  • Block diagram of Peňáz’ system with single control loop: F – finger, L – lamp, PC – photo cell, S – segments of transparent pressure cuff, C<sub>1 </sub>– average of PC-signal, DA – difference amplifier, V(PG) – plethysmographic signal, PID – correcting network, C<sub>2</sub> – set point SP, SW – switch between open and closed loop, PA – power amplifier, EPT – electro-pneumatic transducer, M(CP) Pressure measured with Manometer. (Constructed with respect to Peňáz’ original drawing).<ref name="Penaz_principle" />
ASPECT OF HISTORY
History of Continuous Noninvasive Arterial Pressure
The article reviews the evolution of continuous noninvasive arterial pressure measurement (CNAP). The historical gap between ease of use, but intermittent upper arm instruments and bulky, but continuous “pulse writers” (sphygmographs) is discussed starting with the first efforts to measure pulse, published by Jules Harrison in 1835.

Википедия

Diffusionless transformation

A diffusionless transformation is a phase change by some form of cooperative, homogenous movement of many atoms that results in a change in the crystal structure. These movements are small, usually less than the interatomic distances, and the neighbors of an atom remain close. The systematic movement of large numbers of atoms led to some to refer to these as military transformations in contrast to civilian diffusion-based phase changes, initially by Frederick Charles Frank and John Wyrill Christian.

The most commonly encountered transformation of this type is the martensitic transformation which, while probably the most studied, is only one subset of non-diffusional transformations. The martensitic transformation in steel represents the most economically significant example of this category of phase transformations, but an increasing number of alternatives, such as shape memory alloys, are becoming more important as well.